

Chapter 7

7 Dynamic recommender

ensembles

Hybrid recommender systems – and recommender ensembles as a particular case –

have become a very popular strategy for making recommendations, since they help

alleviate most of the shortcomings of the individual recommenders combined. They

have, however, specific problems such as the need of deciding which information

sources should be exploited, which recommenders should exploit each of these

sources, and how the combination of recommenders should be configured.

In this chapter we propose a framework to decide how dynamic hybridisation

should be balanced, by estimating its expected improvements on individual recom-

mendations. Furthermore, we provide some requirements to decide when to build

such hybridisation. Within the spectrum of hybrid recommendation approaches, we

focus on those that linearly combine the output from several recommenders, and use

different weights for generating a particular aggregation of the individual recommen-

dations. In the standard approach, these weights are typically fixed regardless of the

user for which recommendations are produced, or the recommended items. In this

context we investigate the use of performance predictors to assign those weights

dynamically depending on the target user or item. We evaluate our approach using

the predictors proposed in the previous chapter. The results obtained show that the

generated dynamic ensembles are capable of outperforming their static counterparts.

Furthermore, they also show that dynamic ensembles can be improved if predictors

with stronger predictive power (higher correlation values as observed in the previous

chapter) are used.

In Section 7.1 we present and formulate the research problem of recommenda-

tion hybridisation. Next, in Section 7.2 we describe our proposed performance pre-

diction framework for dynamic hybrid recommendation. Section 7.3 describes the

experiments conducted and provide an overall discussion of the obtained results.

Finally, in Section 7.4 some conclusions are given.

142 Chapter 7. Dynamic recommender ensembles

7.1 Problem statement

As described in Chapter 2, hybrid recommenders are built by the combination of

different recommendation methods. In the simplest and typical case, hybrid recom-

mendations are produced by weighting and summing the utility values output by

some recommenders, forming a so called recommender ensemble where an arbitrary

number of algorithms of different kinds (content-based, user-based collaborative

filtering, item-based collaborative filtering, social-based, demographics-based, etc.)

can be combined.

Researchers in Machine Learning have known for long that the combination of

classifiers usually achieves better results than each method separately, which is also

true in Recommender Systems – the Netflix prize has been a paradigmatic example

of this, where all the top classified teams used large recommender ensembles. We

focus on weighted hybrid approaches, as an option that begets a simple and general

formulation of the dynamic balance of the combined methods by just setting the

weights of each method in the hybrid combination. This approach can be ex-

pressed as follows:

 (7.1)

In this chapter we investigate whether the performance predictors proposed in

the previous chapter – where we have already found degrees of correlation between

the ambiguity (clarity) of the user‟s preferences and the accuracy of the system‟s rec-

ommendations – can be useful for hybridisation. Specifically, we aim to use these

predictors to build dynamic hybrid recommenders in such a way that the weight

 depends not only on the recommender but also on the current user , or poten-

tially other variables such as the item or other available context information. We

propose to specify such weights according to the ambiguity of the user‟s preferences

or item‟s patterns, that is, we aim to use the performance predictors defined in the

Chapter 6 to estimate those weights.

In the next section we propose a framework to perform dynamic hybrid recom-

mendation where we use recommendation performance predictors and we analyse

different requirements related to the adaptation of such predictors to produce

weights in a hybrid recommender combination. After that, three different experi-

ments are presented, where the predictors proposed in Chapter 6 are used as dy-

namic weights in the combination.

7.2 A performance prediction framework for ensemble recommendation 143

7.2 A performance prediction framework for

ensemble recommendation

Let us simplify Equation (7.1) to the case where only two recommenders and

are used. In this situation, only one weighting factor is needed (because of the con-

straint for the weights to sum to one) and we would have the following formulation:

 (7.2)

In this case, since the weight is the same for every user and item we refer

to such a recommender as a static hybrid. However, a single value of the combination

parameter is not generally the optimal for each (user, item) pair. Therefore, instead

of Equation (7.2), we may want to consider:

 (7.3)

where is the combination parameter which may depend on the current user, item,

or both, and probably also depending on the recommender . In this case we refer

to such method as a dynamic hybrid.

A suitable assignment of the parameters is a difficult task. In our ap-

proach, however, we propose to use the performance prediction methodology devel-

oped in the previous chapter, whenever the predictors show some correlation with

the performance of a recommender. In this way, since we have some evidence that

the performance predictors are able to estimate in advance the performance of a user

in a user or item basis, we can use such estimations to weight accordingly the ratings

predicted for a given user and item pair by each recommender.

In this context, it is not granted in general to obtain improvements whenever a

performance predictor is used in a dynamic ensemble. We have to devise a set of

conditions in which such predictors may be used; moreover, the ensemble problem

has to be well defined, which is not always true as we shall show. Hence, we define a

framework for dynamic hybrid recommendation based on recommendation per-

formance predictors, characterised by some prerequisites, a specific normalisation

strategy, and a weighting distribution among recommenders. In this framework, the

weights are obtained by transformations of the values obtained by a performance

predictor, in a similar way as the work presented in (Yom-Tov et al., 2005b) on rank

aggregation in Information Retrieval, but in the context of Recommender Systems.

7.2.1 Requirements

A first requirement to use a performance predictor for weighting the recommenders

of an ensemble, is that it should correlate positively with the performance of not all

144 Chapter 7. Dynamic recommender ensembles

but some of such recommenders, or with the performance of all the recommenders

but to different degrees. If a performance predictor correlates positively with all the

recommenders in an ensemble to a similar extent, it does not provide a discriminative

criteria to weight the recommenders any differently.

A predictor should be used to assign weights to those recommenders of the en-

semble with which it correlates for performance. These assignments also alter the

weights of the uncorrelated recommenders, since the weights of all the recommend-

ers in the ensemble need to sum to 1. However, this should not affect the overall

performance contribution of these recommenders, as the resulting weight should

correspond randomly with their performance (hence the unpredicted recommenders‟

weight can be expected to change for good as much as for bad, whereas the weight

of predicted recommenders should change more often for good).

Figure 7.1 shows which correlations can be considered valid according to the

statements presented above, for an ensemble with two recommenders R1 and R2.

The horizontal axis depicts the correlation with respect R1 and the vertical axis with

R2. Hence, the dotted area represents those situations where a predictor‟s correlation

for R1 is higher than for R2, and thus, the predictor should weight R1. Analogously,

the striped area represents the candidate situations where the predictor should weight

R2. Furthermore, when correlations with R1 and R2 are too similar (diagonal) no

weighting assignment is preferred, and thus, if a predictor lies in the white area it

should be used for weighting neither R1 nor R2 for the reasons described above.

Another requirement is that a recommender should not have an always superior

or always inferior performance to those of the rest of the ensemble‟s recommenders.

Otherwise the problem is distorted by the fact that the best weight is the one that

gets closest to 0 for the recommenders that systematically perform worse (or 1 for

the best), regardless of how excellent or terribly bad is the applied strategy, or the

predictive power of the approach, since a biased predictor (either towards 0 or 1,

depending on which recommender (the worst or the best) such predictor is weight-

ing) would obtain very good results. This issue is recognised in (van Setten, 2005)

where the author presents the situation where all recommenders produce item sug-

gestions that are all too low or all too high with respect to the true user‟s preferences,

and then the recommender ensemble is less accurate than the best individual recom-

mender. In summary, underperforming recommenders are useless in an ensemble to

begin with, or equivalently, the over performing one(s) should be used alone, and

thus, there is no true weighting problem to solve.

7.2 A performance prediction framework for ensemble recommendation 145

7.2.2 Predictor normalisation

The output of a predictor is required to correlate with the performance of a recom-

mender, but it is not necessarily by itself a good value for weighting the recom-

mender in an ensemble, as already pointed out in (Hauff et al., 2009). In order to

generate appropriate weights, the predictor output should be transformed by a

monotonic function into values on a comparable scale, such as simply . We shall

call this transformation “normalisation.”

In this context, different transformations can be applied. Mapping the minimum

value to 0 and the maximum to 1 is the simplest transformation, also known as min-

max score normalisation (Renda and Straccia, 2003). Another common approach is

to map (named rank-sim by Renda and Straccia, 2003) the predictor scores onto

evenly distributed points in the , preserving their order. Min-max preserves the

original predictor score distribution, while rank-sim maps it onto a uniform distribu-

tion. There is no obvious a priori reason to decide which case is preferable, to pre-

serve the original distribution, or to equalise it somehow, and in fact more complex

normalisation techniques could be used, like the one proposed in (Fernández et al.,

2006b).

7.2.3 Weight distribution among recommenders

Once the predictor output has been normalised, it still needs a final adjustment to

ensure, among other things, that the sum of the weights assigned to the ensemble‟s

Figure 7.1. Valid predictor correlation regions for a recommender ensemble of size 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
rr

el
a

ti
o

n
 w

rt
 R

2

correlation wrt R1

candidates for weighting R1 candidates for weighting R2

146 Chapter 7. Dynamic recommender ensembles

recommenders is 1. How this step is done depends, mainly, on how many recom-

menders are weighted by predictors, more specifically on whether all or only some of

the combined recommenders are treated by performance predictors. Hence, we con-

sider two options for the distribution of the weights among the recommenders:

a) Only some of the recommenders in the ensemble are given dynamic weights.

The rest of the recommenders receive the same weight, ensuring the weights of

the ensemble‟s recommenders sum up to 1. This can be done in different ways:

 Assigning a weight of 0.5 to the unpredicted recommenders, and dividing

all weights by the total sum. This strategy is named as fixed weight or FW.

 Assigning the dynamic weights to the corresponding recommenders, if we

assume that their sum is ≤ 1, then we divide 1 minus the sum of dynamic

coefficients equally among the unpredicted recommenders. We denote

this strategy as one minus or OM. If the sum is greater than 1, we have to

divide by the total sum and normalise it by the total number of predictors.

b) All recommenders are weighted using a specific predictor per recommender.

This is not easy to grant in general, as there may not be predictors for all the re-

commenders combined. In case this option is taken, the weights can be simply

normalised by the sum of weights.

Furthermore, if the output of each recommender has a different range, it would

be necessary to apply an additional normalisation step to the recommender scores.

The most usual strategies are the ones described in the previous section: score or

rank normalisation (Renda and Straccia, 2003).

7.3 Experimental results

We next report experiments assessing the usefulness of the proposed predictors for

adjusting the weights of a recommender ensemble, once their predictive power has

been confirmed against the recommenders‟ actual performance, as reported in the

previous chapter. We identify the combinations of recommenders that meet the con-

ditions stated in the previous section for the dynamic combination problem to make

sense and select the performance predictors to be applied based on their observed

correlation with the performance of the recommenders (as reported in Section 6.5),

and the requirements proposed in this chapter, i.e., that one recommender in the

ensemble should have a positive correlation with the predictor, and the other should

have an opposite or near neutral correlation. Then, we compare dynamic against

static ensembles.

Among the different ways to set up static ensembles of two recommenders we

take as baselines a) the best performing one in test, and b) the best theoretical static

one without prior information, i.e., one with . Intuitively, an even weighting

7.3 Experimental results 147

is the optimum over the – theoretical – set of all recommender ensembles: if say

 was the best weight for the combination of two recommenders R1+R2,

then should be fairly bad for the permutation R2+R1 (

being best). If we assume that performance loss is convex with respect to –

it can be seen that otherwise the hybrid may underperform its constituents –, then

 is the best compromise for R1+R2 and R2+R1. Since the set of all possible

ensembles includes all the permutations of the combined recommenders, is

the best (theoretical) overall weight.

We also take as “skylines” (upper bound baselines) an oracle performance pre-

dictor consisting of the performance of the recommender itself. We shall refer to this

method as „perfect correlation‟, where the true performance of both recommenders

is used as a weight for hybridisation (hence, such predictor would have a correlation

of 1.0 with the recommender‟s performance), whereas we shall refer to it as „PC-OM‟

and „PC-FW‟ when the performance of only one recommender is used (the same

recommender being weighted by the predictors) along with the one minus or the

fixed weight strategy for weight distribution (see Section 7.2.3). In all cases we apply

a rank normalisation technique on the recommenders‟ scores.

In the subsequent sections we present three experiments conducted to evaluate

the proposed performance predictors. In the first experiment we use the rating-based

predictors and test both user- and item-based performance predictors presented in

Section 6.2.1. We use the MovieLens dataset, and compare the results with four of

the evaluation methodologies presented in Chapter 4, i.e., AR, 1R, P1R, and U1R. In

the second experiment we use predictors based on log data. We evaluate the predic-

tors presented in Section 6.2.2 on the two versions of the Last.fm dataset using the

1R methodology. Finally, in the third experiment we test the social-based predictors

presented in Section 6.3 on the CAMRa dataset and the AR methodology.

7.3.1 Dynamic recommender ensembles on rating data

As a first instantiation of our framework for building dynamic recommender ensem-

bles described in Section 7.2, we first have to identify the recommenders to combine,

that is: one of the recommenders should have a positive correlation with the predic-

tor, while the other should have an opposite or near neutral correlation; besides, they

should not perform very differently.

According to the correlation results presented in Section 6.5.1, we identify the

pairs of recommenders presented in Table 7.1 as combinations meeting the condi-

tions stated above. The first three ensembles are combinations of a collaborative

filtering with a content-based recommendation method. The last ensemble combines

a user-based collaborative filtering method with a non-personalised method, and the

rest of the ensembles are combinations of two collaborative filtering methods. Al-

148 Chapter 7. Dynamic recommender ensembles

though some of these combinations have not been typical in the recommender sys-

tems literature, in our study they serve as a proof of concept to check whether the

proposed dynamic recommender ensemble framework is useful in general or not. We

refer the reader to Appendix A.2 for more details about the implementation of the

recommenders.

The first two rows of Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show the

P@10 values for each of the combined recommenders obtained using the AR, 1R,

U1R, and P1R methodologies, respectively. In Appendix A.5.1 we report results with

other evaluation metrics. Note that, as mentioned in Chapter 4, in the AR methodol-

ogy the absolute values are not meaningful since they depend on the amount of rele-

vant information in test; on the other hand, for the 1R related methodologies (i.e.,

1R, U1R, and P1R) the precision at 10 metric has an upper bound on 0.1, since there

is only one relevant item in each ranking.

In these tables we may observe that among the six considered ensembles, there

are cases where the first recommender (with respect to which the performance is

predicted) performs better, worse, or similarly to the second recommender. This

situation changes accross methodologies and provides for a comparison of the result-

ing effects when the stated requirements are not met. Analogously, the predictors‟

correlations may change depending on the evaluation methodology followed, as ob-

served in Section 6.5.1. Specifically, the recommenders presented in Table 7.1 where

chosen according to the correlation results obtained for the AR methodology, and

we may observe that some of the conditions stated above do not hold for some of

the selected cases, for instance, correlation between most of the predictors and kNN

recommender is negligible in the 1R, U1R, and P1R methodologies, in contrast with

the results found for the AR methodology.

In the tables we may also observe that the best static ensemble is different de-

pending on the evaluation methodology and the combined recommenders. The per-

formance values of the best static ensembles, on the other hand, show an interesting

situation that does depend on the specific considered ensemble, namely, whether the

(best) static ensembles outperform or not both recommenders. For the AR method-

ology (Table 7.2), in the case of HRU1, HRU3, HRU5, and HRU6, the best static

 R1 R2

HRU1 TFL1 CB

HRU2 TFL2 CB

HRU3 kNN CB

HRU4 kNN IB

HRU5 kNN pLSA

HRU6 kNN ItemPop

Table 7.1. Selected recommenders for building dynamic ensemble using user performance

predictors that exploit rating-based information (MovieLens dataset).

7.3 Experimental results 149

outperforms both recommenders, but this is not observed for HRU2 nor for HRU4.

In the latter scenarios, thus, it seems hybridisation would not be so useful for combi-

nation.

Additionally, regarding the normalisation of the predictor‟s output we evaluate

two normalisation techniques: rank and score normalisation. Since there is no prior

information about which normalisation technique would provide better results, we

test both, and report the best results in each situation, which are usually achieved by

the rank-sim normalisation technique. Finally, the weigh strategy is also included as a

parameter of the experiments. Since we only have a predictor for one of the recom-

menders in the ensemble (denoted as R1), as we explained in Section 7.2.3, we may

weight the unpredicted recommender as one minus the predictor value (OM), or as

0.5 and then divide the weights of the two recommenders by the sum of weights

(FW).

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0024 0.0696 0.0307 0.0307 0.0307 0.0307

R2 (=0.0) 0.0163 0.0163 0.0163 0.0001 0.1454 0.0897

Baseline (=0.5) 0.0106 0.0473 0.0363 0.0008 0.1142 0.0808

Best static

(best )

0.0180

(0.1)

0.0668

(0.9)

0.0392

(0.9)

0.0078

(0.9)

0.1475

(0.1)

0.0937

(0.1)

Perfect correlation 0.0189 0.0732 0.0401 0.0311 0.1469 0.0980

PC-OM 0.0176 0.0721 0.0434 0.0091 0.1489 0.0958

PC-FW 0.0177 0.0541 0.0379 0.0025 0.1478 0.0958

Entropy-OM 0.0110

 0.0685

 0.0388

 0.0069

 0.1126

 0.0791

ItemSimple-OM 0.0170

 0.0685

 0.0390

 0.0072

 0.1496

 0.0919

ItemUser-OM 0.0172

 0.0680

 0.0386

 0.0068

 0.1513

 0.0924

RatUser-OM 0.0177

 0.0687

 0.0393

 0.0072

 0.1535

 0.0931

RatItem-OM 0.0178

 0.0674

 0.0389

 0.0066

 0.1542

 0.0928

IRUser-OM 0.0169

 0.0668

 0.0387

 0.0066

 0.1487

 0.0922

IRItem-OM 0.0172

 0.0655

 0.0378

 0.0061

 0.1500

 0.0918

IRUserItem-OM 0.0170

 0.0665

 0.0388

 0.0066

 0.1498

 0.0916

Entropy-FW 0.0111

 0.0528

 0.0369

 0.0027

 0.1156

 0.0807

ItemSimple-FW 0.0156

 0.0529

 0.0369

 0.0027

 0.1433

 0.0908

ItemUser-FW 0.0166

 0.0529

 0.0368

 0.0028

 0.1468

 0.0915

RatUser-FW 0.0170

 0.0528

 0.0370

 0.0028

 0.1498

 0.0919

RatItem-FW 0.0170

 0.0529

 0.0369

 0.0027

 0.1499

 0.0918

IRUser-FW 0.0161

 0.0526

 0.0371

 0.0029

 0.1420

 0.0912

IRItem-FW 0.0163

 0.0525

 0.0367

 0.0027

 0.1459

 0.0909

IRUserItem-FW 0.0164

 0.0527

 0.0372

 0.0028

 0.1452

 0.0908

Table 7.2. Dynamic ensemble performance values (P@10) using AR methodology and user

predictors (MovieLens dataset). Improvements over the baseline are in bold, the best result

for each column is underlined. The value of each dynamic hybrid is marked with
 ,

where and indicate, respectively, statistical difference with respect to the best static

(upper,) and with respect to the baseline (lower,). Moreover, and indicate,

respectively, significant and non-significant improvements over the corresponding

recommender. A similar convention with and indicates values below the recommender

performance. Statistical significance is established by paired Wilcoxon in all cases.

150 Chapter 7. Dynamic recommender ensembles

Table 7.2 shows the results obtained following the AR methodology. We may

observe how, except in three cases, dynamic ensembles outperform the baseline.

Interestingly, for HRU5, the best performing method is not the one obtained with

the „perfect correlation‟ approach, as we may expect, but with our dynamic ensem-

bles based on the user clarity performance predictors. This is due to the fact that the

corresponding predictor for the first recommender (P@10 values for kNN) also has

a strong correlation with the performance of the second recommender (pLSA), and

thus, it does not satisfy the requirement that the correlation values should not be too

similar for both recommenders.

Table 7.3 shows the results obtained with the 1R methodology. Note that in this

case the correlations were consistently lower than those obtained with the AR meth-

odology. In particular, this is emphasised in the results of the dynamic ensemble

HRU1, which do not outperform the baseline for almost any predictor. This can be

explained with the results reported in Table 6.9, where the TFL1 recommender ob-

tains a near-zero correlation, and thus, the correlation requirement of our framework

is not satisfied. Specifically, this fact highlights the importance of the strength in the

correlation between the predictor and the recommender performance, as stated in

Section 7.2.1. Furthermore, we may observe in the table that for two combinations

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0221 0.0690 0.0437 0.0437 0.0437 0.0437

R2 (=0.0) 0.0221 0.0221 0.0221 0.0074 0.0836 0.0649

Baseline (=0.5) 0.0338 0.0536 0.0469 0.0327 0.0749 0.0658

Best static

(best )

0.0338

 (0.4)

0.0720

 (0.9)

0.0514

 (0.8)

0.0455

 (0.9)

0.0856

 (0.1)

0.0696

 (0.2)

Perfect correlation 0.0370 0.0715 0.0553 0.0458 0.0840 0.0723

PC-OM 0.0358 0.0683 0.0507 0.0353 0.0811 0.0709

PC-FW 0.0343 0.0592 0.0482 0.0344 0.0803 0.0699

Entropy-OM 0.0332

 0.0662

 0.0472

 0.0382

 0.0709

 0.0626

ItemSimple-OM 0.0304

 0.0666

 0.0473

 0.0384

 0.0844

 0.0681

ItemUser-OM 0.0305

 0.0660

 0.0471

 0.0381

 0.0847

 0.0680

RatUser-OM 0.0307

 0.0666

 0.0478

 0.0386

 0.0850

 0.0680

RatItem-OM 0.0305

 0.0663

 0.0475

 0.0385

 0.0849

 0.0678

IRUser-OM 0.0304

 0.0655

 0.0470

 0.0381

 0.0839

 0.0675

IRItem-OM 0.0298

 0.0644

 0.0457

 0.0370

 0.0839

 0.0671

IRUserItem-OM 0.0305

 0.0655

 0.0471

 0.0381

 0.0841

 0.0674

Entropy-FW 0.0339

 0.0594

 0.0472

 0.0356

 0.0686

 0.0650

ItemSimple-FW 0.0321

 0.0596

 0.0473

 0.0358

 0.0837

 0.0684

ItemUser-FW 0.0320

 0.0594

 0.0471

 0.0356

 0.0843

 0.0683

RatUser-FW 0.0321

 0.0596

 0.0475

 0.0359

 0.0848

 0.0684

RatItem-FW 0.0321

 0.0595

 0.0473

 0.0358

 0.0847

 0.0684

IRUser-FW 0.0320

 0.0592

 0.0471

 0.0356

 0.0834

 0.0680

IRItem-FW 0.0318

 0.0588

 0.0465

 0.0349

 0.0835

 0.0674

IRUserItem-FW 0.0320

 0.0592

 0.0471

 0.0356

 0.0837

 0.0678

Table 7.3. Dynamic ensemble performance values (P@10) using 1R methodology and user

predictors (MovieLens dataset).

7.3 Experimental results 151

(HRU2 and HRU5) the best performance results are not obtained by dynamic ap-

proaches, but by the best static approaches in contrast with what we found for the

AR methodology. This situation is different to the one obtained when we evaluate

using MAP@10 (see Appendix A.4.1), where the best results are always obtained by

dynamic ensembles.

Table 7.4 and Table 7.5 show the performance values obtained with the unbiased

methodologies proposed in Chapter 4, that is, U1R and P1R. Following the U1R

methodology (Table 7.4) we obtain similar results to those obtained in the 1R meth-

odology except for HRU6. In contrast, with the P1R methodology (Table 7.5) our

framework does not show improvements over any baseline. We may see that the

„perfect correlation‟ methods are able to obtain better, although very close, values

than those of the best static ensemble. This means that there is room for improve-

ment in this methodology, and that the performance of the dynamic recommender

ensembles could be improved if better performance predictors were found.

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0294 0.0524 0.0381 0.0381 0.0381 0.0381

R2 (=0.0) 0.0223 0.0223 0.0223 0.0068 0.0718 0.0406

Baseline (=0.5) 0.0345 0.0440 0.0396 0.0283 0.0639 0.0493

Best static

(best )

0.0351

 (0.6)

0.0536

 (0.9)

0.0424

 (0.7)

0.0384

 (0.9)

0.0732

 (0.1)

0.0493

 (0.5)

Perfect correlation 0.0389 0.0552 0.0493 0.0396 0.0742 0.0559

PC-OM 0.0373 0.0485 0.0471 0.0332 0.0732 0.0548

PC-FW 0.0355 0.0459 0.0429 0.0307 0.0722 0.0535

Entropy-OM 0.0345
 0.0518

 0.0404

 0.0337

 0.0615

 0.0471

ItemSimple-OM 0.0333

 0.0519

 0.0403

 0.0339

 0.0723

 0.0444

ItemUser-OM 0.0334

 0.0517

 0.0403

 0.0336

 0.0726

 0.0438

RatUser-OM 0.0335

 0.0521

 0.0410

 0.0341

 0.0728

 0.0435

RatItem-OM 0.0334

 0.0516

 0.0406

 0.0341

 0.0726

 0.0434

IRUser-OM 0.0333

 0.0511

 0.0401

 0.0336

 0.0718

 0.0440

IRItem-OM 0.0326

 0.0504

 0.0388

 0.0325

 0.0714

 0.0430

IRUserItem-OM 0.0334

 0.0511

 0.0401

 0.0336

 0.0719

 0.0437

Entropy-FW 0.0347

 0.0472

 0.0402

 0.0308

 0.0636

 0.0486

ItemSimple-FW 0.0342

 0.0473

 0.0402

 0.0309

 0.0720

 0.0467

ItemUser-FW 0.0342

 0.0471

 0.0401

 0.0308

 0.0724

 0.0467

RatUser-FW 0.0343

 0.0474

 0.0405

 0.0310

 0.0727

 0.0469

RatItem-FW 0.0342

 0.0472

 0.0403

 0.0309

 0.0725

 0.0469

IRUser-FW 0.0341

 0.0470

 0.0401

 0.0308

 0.0714

 0.0469

IRItem-FW 0.0338

 0.0467

 0.0393

 0.0302

 0.0712

 0.0464

IRUserItem-FW 0.0341

 0.0471

 0.0401

 0.0308

 0.0716

 0.0469

Table 7.4. Dynamic ensemble performance values (P@10) using the U1R methodology and

user predictors (MovieLens dataset)

152 Chapter 7. Dynamic recommender ensembles

In summary, the results show that our methods significantly outperform

static ensembles for different recommender combinations in most of the

evaluation methodologies. Moreover, in most cases our methods also achieve the

best results for each ensemble, let aside the performance of the oracle performance

prediction (perfect correlation) and best static approaches, which use groundtruth

(test) information, differently to the clarity- and entropy-based performance predic-

tors.

Nevertheless, we observe that in those cases where the dynamic ensembles do

not perform better than the static ensembles, the best static approaches use values of

 close to . We hypothesise that our framework may be biased towards favouring

those ensembles whose recommender combination is highly unbalanced. Interest-

ingly, although the predictors only weight one of the recommenders (not always the

better performing one) a dynamic ensemble is usually able to find the optimal com-

bination in the unbalanced cases. In particular, this could help to answer why our

dynamic ensembles underperform static approaches for the U1R and P1R method-

ologies, since the best static in these cases seem to be often very close to .

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0203 0.0348 0.0265 0.0265 0.0265 0.0265

R2 (=0.0) 0.0197 0.0197 0.0197 0.0208 0.0604 0.0282

Baseline (=0.5) 0.0470 0.0579 0.0539 0.0269 0.0763 0.0560

Best static

(best )

0.0470

 (0.5)

0.0593

 (0.6)

0.0541

 (0.6)

0.0278

 (0.7)

0.0796

 (0.4)

0.0560

 (0.5)

Perfect correlation 0.0464 0.0579 0.0546 0.0314 0.0767 0.0564

PC-OM 0.0425 0.0554 0.0528 0.0296 0.0746 0.0537

PC-FW 0.0429 0.0542 0.0504 0.0282 0.0764 0.0522

Entropy-OM 0.0431

 0.0564

 0.0502

 0.0261

 0.0698

 0.0521

ItemSimple-OM 0.0358

 0.0509

 0.0429

 0.0261

 0.0689

 0.0441

ItemUser-OM 0.0361

 0.0512

 0.0431

 0.0261

 0.0675

 0.0444

RatUser-OM 0.0362

 0.0514

 0.0436

 0.0263

 0.0663

 0.0446

RatItem-OM 0.0361

 0.0511

 0.0432

 0.0262

 0.0661

 0.0444

IRUser-OM 0.0365

 0.0513

 0.0435

 0.0263

 0.0687

 0.0447

IRItem-OM 0.0357

 0.0504

 0.0421

 0.0257

 0.0669

 0.0439

IRUserItem-OM 0.0365

 0.0513

 0.0434

 0.0263

 0.0675

 0.0447

Entropy-FW 0.0457

 0.0577

 0.0524

 0.0265

 0.0745

 0.0546

ItemSimple-FW 0.0410

 0.0540

 0.0475

 0.0266

 0.0720

 0.0498

ItemUser-FW 0.0409

 0.0538

 0.0473

 0.0265

 0.0706

 0.0497

RatUser-FW 0.0410

 0.0540

 0.0477

 0.0267

 0.0691

 0.0499

RatItem-FW 0.0411

 0.0541

 0.0476

 0.0266

 0.0688

 0.0499

IRUser-FW 0.0410

 0.0538

 0.0474

 0.0266

 0.0721

 0.0496

IRItem-FW 0.0406

 0.0534

 0.0467

 0.0263

 0.0699

 0.0491

IRUserItem-FW 0.0409

 0.0538

 0.0474

 0.0266

 0.0706

 0.0496

Table 7.5. Dynamic ensemble performance values (P@10) using the P1R methodology and

user predictors (MovieLens dataset).

7.3 Experimental results 153

Using item-based predictors

As we noted in Section 6.5.2, item-based predictors could also be valuable since they

also obtain high correlations with respect to item perfomance. Table 7.6 shows the

selected recommenders that satisfy the correlation requirements with item predictors.

Table 7.7, Table 7.8, and Table 7.9 show the results obtained when these recom-

mender combinations are evaluated and compared against dynamic versions (using

our proposed item predictors), and using the 1R, U1R, and uuU1R methodologies.

In this case, ensemble predictions are computed by means of Equation (7.3) with

values only depending on the current item, that is, .

When measuring the performance of dynamic ensembles that use item-based

performance predictors, we do not compute the perfect correlation predictors be-

cause we do not have a standard metric for item performance. Apart from that, the

 R1 R2

HRI1 pLSA CB

HRI2 pLSA kNN

HRI3 ItemPop CB

HRI4 ItemPop kNN

Table 7.6. Selected recommenders for building dynamic ensembles using item predictors that

exploit rating data (MovieLens dataset).

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0836 0.0836 0.0649 0.0649

R2 (=0.0) 0.0221 0.0437 0.0221 0.0437

Baseline (=0.5) 0.0909 0.0924 0.0886 0.0907

Best static

(best )

0.0909

(0.5)

0.0924

(0.5)

0.0886

(0.5)

0.0907

(0.5)

Entropy-OM 0.0708

 0.0858

 0.0684

 0.0831

UserSimple-OM 0.0761

 0.0905

 0.0723

 0.0837

UserItem-OM 0.0776

 0.0903

 0.0749

 0.0843

RatItem-OM 0.0751

 0.0893

 0.0712

 0.0824

RatUser-OM 0.0759

 0.0892

 0.0674

 0.0789

URItem-OM 0.0776

 0.0911

 0.0797

 0.0885

URUser-OM 0.0781

 0.0906

 0.0721

 0.0820

URItemUser-OM 0.0777

 0.0909

 0.0777

 0.0869

Entropy-FW 0.0798

 0.0923

 0.0771

 0.0895

UserSimple-FW 0.0946

 0.0979

 0.0916

 0.0949

UserItem-FW 0.0949

 0.0980

 0.0920

 0.0950

RatItem-FW 0.0944

 0.0979

 0.0913

 0.0948

RatUser-FW 0.0946

 0.0978

 0.0908

 0.0942

URItem-FW 0.0940

 0.0981

 0.0923

 0.0958

URUser-FW 0.0946

 0.0978

 0.0912

 0.0945

URItemUser-FW 0.0944

 0.0980

 0.0921

 0.0954

Table 7.7. Dynamic ensemble performance values (P@10) using 1R methodology with item

predictors (MovieLens dataset).

154 Chapter 7. Dynamic recommender ensembles

rest of the experimental settings is the same as those described above for dynamic

hybrids with user-based performance predictors.

Table 7.7 shows the results obtained by using item-based predictors and the 1R

methodology. We may observe that if the predictors are weighted using the FW

strategy, dynamic ensembles outperform static combinations in every situation, ex-

cept for the Entropy predictor. It is interesting to note that, differently to user-based

predictors, the dynamic ensembles are able to outperform the best static ensemble

even when they are close to the baseline with . The reader may compare Ta-

ble 7.4 and Table 7.7 to observe these differences.

In Table 7.8, where the methodology U1R is used, a very similar situation occurs,

although not all dynamic ensembles outperform the static approach with the FW

strategy. Specifically, the dynamic hybrid weighted by the URItem clarity predictor

clearly obtains better performance than the rest of the dynamic and static ensembles,

in particular the HRI3 and HRI4 combinations.

Finally, the performance results found for the uuU1R methodology are pre-

sented in Table 7.9, in which the test ratings – i.e., the users – are uniformly distrib-

uted over the items, items previously uniformly distributed in the test (like in the

U1R methodology). In this experiment, the performance of the dynamic ensemble is

much better than in the previous experiments, since all the rating-based item pre-

dictors (except for the Entropy predictor) outperform the static baseline no

matter the weighting strategy in three out of four recommender combinations.

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0718 0.0718 0.0406 0.0406

R2 (=0.0) 0.0223 0.0381 0.0223 0.0381

Baseline (=0.5) 0.0764 0.0812 0.0630 0.0689

Best static

(best )

0.0764

(0.5)

0.0812

(0.5)

0.0630

(0.5)

0.0689

(0.5)

Entropy-OM 0.0571

 0.0652

 0.0435

 0.0508

UserSimple-OM 0.0657

 0.0716

 0.0399

 0.0450

UserItem-OM 0.0671

 0.0721

 0.0425

 0.0462

RatItem-OM 0.0645

 0.0699

 0.0392

 0.0435

RatUser-OM 0.0620

 0.0671

 0.0335

 0.0382

URItem-OM 0.0705

 0.0757

 0.0496

 0.0532

URUser-OM 0.0650

 0.0699

 0.0372

 0.0414

URItemUser-OM 0.0690

 0.0741

 0.0462

 0.0500

Entropy-FW 0.0668

 0.0757

 0.0518

 0.0595

UserSimple-FW 0.0840

 0.0886

 0.0601

 0.0658

UserItem-FW 0.0844

 0.0887

 0.0609

 0.0663

RatItem-FW 0.0839

 0.0883

 0.0598

 0.0653

RatUser-FW 0.0831

 0.0876

 0.0573

 0.0630

URItem-FW 0.0851

 0.0897

 0.0642

 0.0698

URUser-FW 0.0836

 0.0881

 0.0585

 0.0642

URItemUser-FW 0.0848

 0.0893

 0.0625

 0.0680

Table 7.8. Dynamic ensemble performance values (P@10) using U1R methodology with item

predictors (MovieLens dataset).

7.3 Experimental results 155

In the other combination (HRI3) the best strategy is FW, the same as with the other

evaluation methodologies.

7.3.2 Dynamic recommender ensembles on log data

In this section we present experiments in which log-based predictors are used to dy-

namically weight an ensemble‟s recommenders. As with rating-based information, in

this case we first have to select suitable recommenders to combine according to the

requirements established in our framework. Hence, we choose the combinations

HL1, HL2 and HL3 presented in Table 7.10, where, as before, the performance pre-

dictors weight the recommender denoted as R1.

The Last.fm dataset contains timestamped log-based information. As noted in

Chapter 4, for efficiency reasons, we only use the 1R methodology in this dataset.

Table 7.11 shows the results obtained with a temporal split of the data, and Table

7.12 shows the results obtained with a random split (five-fold) of the data.

 R1 R2

HL1 kNN CB

HL2 kNN ItemPop

HL3 pLSA kNN

Table 7.10. Selected recommenders for building dynamic ensembles using performance

predictors that exploit log-based information (Last.fm dataset).

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0536 0.0536 0.0225 0.0225

R2 (=0.0) 0.0198 0.0275 0.0198 0.0275

Baseline (=0.5) 0.0374 0.0440 0.0239 0.0256

Best static

(best )

0.0491

(0.9)

0.0502

(0.9)

0.0239

(0.6)

0.0271

(0.2)

Entropy-OM 0.0324

 0.0385

 0.0236

 0.0280

UserSimple-OM 0.0510

 0.0548

 0.0237

 0.0282

UserItem-OM 0.0514

 0.0547

 0.0236

 0.0280

RatItem-OM 0.0516

 0.0547

 0.0237

 0.0281

RatUser-OM 0.0523

 0.0551

 0.0237

 0.0282

URItem-OM 0.0498

 0.0536

 0.0234

 0.0280

URUser-OM 0.0518

 0.0551

 0.0234

 0.0279

URItemUser-OM 0.0505

 0.0542

 0.0235

 0.0280

Entropy-FW 0.0344

 0.0410

 0.0241

 0.0275

UserSimple-FW 0.0435

 0.0503

 0.0244

 0.0276

UserItem-FW 0.0435

 0.0501

 0.0245

 0.0275

RatItem-FW 0.0436

 0.0504

 0.0244

 0.0275

RatUser-FW 0.0440

 0.0509

 0.0245

 0.0276

URItem-FW 0.0429

 0.0494

 0.0244

 0.0273

URUser-FW 0.0438

 0.0506

 0.0245

 0.0274

URItemUser-FW 0.0432

 0.0498

 0.0245

 0.0274

Table 7.9. Dynamic ensemble performance values (P@10) using uuU1R methodology with

item predictors (MovieLens dataset).

156 Chapter 7. Dynamic recommender ensembles

We can see that the results of both tables are analogous. The dynamic ensem-

bles weighted by the log-based performance predictors outperform the base-

line static ensemble in all cases, except with the Autocorrelation predictor.

This result is consistent with the correlations presented in Table 6.14 and Table 6.15,

where autocorrelation obtained the lowest (absolute) correlation value for the kNN

recommender on both versions of the dataset. Regarding the pLSA recommender (in

the combination HL3), the Autocorrelation and TimeSimple predictors obtain com-

 HL1 HL2 HL3

R1 (=1.0) 0.0603 0.0603 0.0926

R2 (=0.0) 0.0916 0.0797 0.0603

Baseline (=0.5) 0.0852 0.0755 0.0820

Best static

(best )

0.0914

(0.2)

0.0812

(0.1)

0.0925

(0.9)

Perfect correlation 0.0890 0.0783 0.0863

PC-OM 0.0869 0.0771 0.0851

PC-FW 0.0849 0.0751 0.0826

ItemSimple-OM 0.0904

 0.0804

 0.0901

Autocorrelation-OM 0.0815

 0.0722

 0.0781

TimeSimple-OM 0.0905

 0.0789

 0.0898

ItemTime-OM 0.0906

 0.0804

 0.0902

ItemPriorTime-OM 0.0885

 0.0778

 0.0863

ItemSimple-FW 0.0903

 0.0802

 0.0891

Autocorrelation-FW 0.0842

 0.0746

 0.0809

TimeSimple-FW 0.0901

 0.0785

 0.0884

ItemTime-FW 0.0904

 0.0800

 0.0891

ItemPriorTime-FW 0.0883

 0.0775

 0.0855

Table 7.11. Dynamic ensemble performance values (P@10) using the 1R methodology with

the log-based user predictors (Last.fm, temporal split).

 HL1 HL2 HL3

R1 (=1.0) 0.0204 0.0204 0.0836

R2 (=0.0) 0.0828 0.0767 0.0204

Baseline (=0.5) 0.0764 0.0643 0.0704

Best static

(best )

0.0818

(0.2)

0.0767

(0.1)

0.0837

(0.9)

Perfect correlation 0.0818 0.0760 0.0829

PC-OM 0.0816 0.0755 0.0823

PC-FW 0.0815 0.0745 0.0811

ItemSimple-OM 0.0799

 0.0730

 0.0771

Autocorrelation-OM 0.0717

 0.0596

 0.0686

TimeSimple-OM 0.0814

 0.0762

 0.0518

ItemTime-OM 0.0806

 0.0734

 0.0761

ItemPriorTime-OM 0.0770

 0.0658

 0.0743

ItemSimple-FW 0.0804

 0.0726

 0.0739

Autocorrelation-FW 0.0756

 0.0631

 0.0697

TimeSimple-FW 0.0814

 0.0753

 0.0579

ItemTime-FW 0.0808

 0.0728

 0.0732

ItemPriorTime-FW 0.0783

 0.0671

 0.0719

Table 7.12. Dynamic ensemble performance values (P@10) using the 1R methodology with

log-based user predictors (Last.fm, five-fold random split).

7.3 Experimental results 157

parable correlations with the combined recommenders, yet the performance of the

corresponding dynamic ensembles is very different, thus suggesting that, although we

have found a dependence between the predictors‟ power in terms of correlation, and

their effectiveness in weighting hybrids, this is not a strict necessary condition to

obtain improvements over the static ensembles.

The best performance values were achieved either by single recommenders or by

the best static ensembles. When the best results are obtained by single recommenders

emphasises the fact that no hybridisation is required for that combination (like in

HL1 and HL3 for the temporal split, and HL1 and HL2 for the random split). In the

other case, when the best results are achieved by the best static ensembles, it may

restrict the usefulness of our approach, although our proposed dynamic ensembles

significantly outperform the baseline static ensembles for some predictors such as

TimeSimple and ItemSimple. We have to recall that the best static ensembles are in

fact optimised using the test set, which is clearly not a fair comparison. The results of

the perfect correlation ensembles in the random split are always better than those

obtained by the performance predictors, confirming that predictors with stronger

correlations should obtain better performance results when used for dynamic en-

sembles.

7.3.3 Dynamic recommender ensembles on social data

In the third experiment we exploit the social information available in the CAMRa

dataset to combine collaborative and social filtering recommenders using social-

based performance predictors. Table 7.13 shows the recommender combinations

selected based on the correlations obtained in Section 6.5.4. Here, we present 4 en-

sembles where the two social filtering recommenders, Personal and PureSocial, are

combined with two collaborative filtering recommenders, pLSA and kNN. We saw

in Section 6.5.4 that most of the social-based predictors obtained higher correlations

with the social filtering recommenders, and lower or negligible correlations with the

collaborative filtering recommenders, at least for the social version of the dataset

(Table 6.16). The situation for the collaborative-social version was not so clear, but

for the sake of coherence, we use the same set of ensembles in both versions of the

dataset.

 R1 R2

HS1 Personal pLSA

HS2 Personal kNN

HS3 PureSocial pLSA

HS4 PureSocial kNN

Table 7.13. Selected recommenders for building dynamic ensembles using social-based

user predictors (CAMRa dataset).

158 Chapter 7. Dynamic recommender ensembles

As we mentioned in Section 6.5.4, due to the lack of coverage of the social filter-

ing recommenders, the only methodology that provides sensible results is the AR

methodology. In this section we present the results obtained using this methodology

on the two available versions of the CAMRa dataset: social and collaborative-social.

Table 7.14 shows the results obtained on the social version of the CAMRa data-

set. We see that only for one out of the four recommender combinations, the dy-

namic ensembles consistently outperform the baseline static ensemble. However, it is

interesting to note that the best value is always achieved by the perfect correlation

ensemble, which means that further improvements could be possible if we were able

to find predictors with stronger correlations.

In the collaborative-social version of the dataset (Table 7.15) the results are simi-

lar, except that now for HS2, the best result is obtained by the best static ensemble.

Moreover, a larger number of dynamic ensembles outperform the baseline static en-

semble HS3, whereas at least one dynamic ensemble outperforms the baseline HS1,

which is a better result than the one shown in the previous Table 7.14. We hypothe-

sise this is because on this version of the dataset the individual recommenders display

a more similar performance to each other (compare the differences between R1 and

R2 in Table 7.14 and Table 7.15).

 HS1 HS2 HS3 HS4

R1 (=1.0) 0.1732 0.1732 0.1760 0.1760

R2 (=0.0) 0.1110 0.0473 0.1110 0.0473

Baseline (=0.5) 0.1813 0.1821 0.2006 0.1929

Best static

(best )

0.1842

(0.7)

0.1899

(0.8)

0.2012

(0.4)

0.1952

(0.6)

Perfect correlation 0.2018 0.1929 0.2089 0.1979

PC-OM 0.1872 0.1875 0.2048 0.1946

PC-FW 0.1863 0.1869 0.2042 0.1994

AvgNeighDeg-OM 0.1795

 0.1896

 0.1973

 0.1804

BetCentrality-OM 0.1744

 0.1804

 0.1833

 0.1777

ClustCoeff-OM 0.1786

 0.1786

 0.1836

 0.1753

Degree-OM 0.1738

 0.1839

 0.1976

 0.1765

EgoCompSize-OM 0.1756

 0.1833

 0.1967

 0.1827

HITS-OM 0.1774

 0.1911

 0.1813

 0.1798

PageRank-OM 0.1762

 0.1842

 0.1917

 0.1801

TwoHopNeigh-OM 0.1756

 0.1851

 0.1964

 0.1777

AvgNeighDeg-FW 0.1807

 0.1896

 0.2003

 0.1914

BetCentrality-FW 0.1801

 0.1872

 0.2024

 0.1929

ClustCoeff-FW 0.1804

 0.1875

 0.2003

 0.1890

Degree-FW 0.1798

 0.1887

 0.2000

 0.1929

EgoCompSize-FW 0.1789

 0.1896

 0.2009

 0.1938

HITS-FW 0.1801

 0.1902

 0.1997

 0.1926

PageRank-FW 0.1810

 0.1875

 0.2003

 0.1923

TwoHopNeigh-FW 0.1801

 0.1905

 0.2000

 0.1926

Table 7.14. Dynamic ensemble performance values (P@10) using the AR methodology with

social-based user predictors (CAMRa, social dataset).

7.3 Experimental results 159

Furthermore, some of the correlations obtained for the CAMRa collaborative

dataset are more discriminative between the combined recommenders, in the sense

that, for instance, the correlations between the two-hop neighbourhood predictor

and the Personal recommender were -0.123 and -0.121 in the social and collabora-

tive-social datasets, respectively. However, the correlations between the two-hop

neighbourhood predictor and kNN were 0.004 and 0.130, that is, in the second data-

set the relative distance in correlation between these two recommenders is larger,

according to the correlation with respect to the predictor. This change in the correla-

tions may explain the fact that in Table 7.15 some of the dynamic ensembles outper-

form the perfect correlation ensemble, which does not take the relative correlation

into account with respect to each individual recommender, as noted in 7.3.1.

In general, the HITS predictor obtains the best results among the dynamic

ensembles for some of the tested combinations. Other predictors such as the

betweenness centrality and the ego components size produce more competi-

tive ensembles in the social version of the dataset, whereas the degree and the

average neighbour degree preditors provide better results for more than one combi-

nation in the CAMRa collaborative dataset.

 HS1 HS2 HS3 HS4

R1 (=1.0) 0.1066 0.1066 0.1072 0.1072

R2 (=0.0) 0.1007 0.0226 0.1007 0.0226

Baseline (=0.5) 0.1509 0.1142 0.1599 0.1219

Best static

(best )

0.1524

(0.4)

0.1200

(0.7)

0.1632

(0.3)

0.1219

(0.5)

Perfect correlation 0.1608 0.1188 0.1640 0.1237

PC-OM 0.1202 0.1164 0.1254 0.1199

PC-FW 0.1189 0.1143 0.1263 0.1219

AvgNeighDeg-OM 0.1489

 0.1195

 0.1599

 0.1131

BetCentrality-OM 0.1443

 0.1132

 0.1487

 0.1114

ClustCoeff-OM 0.1465

 0.1123

 0.1483

 0.1108

Degree-OM 0.1472

 0.1154

 0.1614

 0.1107

EgoCompSize-OM 0.1461

 0.1158

 0.1596

 0.1140

HITS-OM 0.1485

 0.1200

 0.1467

 0.1134

PageRank-OM 0.1471

 0.1167

 0.1579

 0.1123

TwoHopNeigh-OM 0.1478

 0.1171

 0.1585

 0.1118

AvgNeighDeg-FW 0.1518

 0.1191

 0.1623

 0.1204

BetCentrality-FW 0.1491

 0.1180

 0.1577

 0.1213

ClustCoeff-FW 0.1500

 0.1182

 0.1566

 0.1189

Degree-FW 0.1489

 0.1191

 0.1627

 0.1208

EgoCompSize-FW 0.1489

 0.1193

 0.1618

 0.1210

HITS-FW 0.1482

 0.1195

 0.1564

 0.1202

PageRank-FW 0.1491

 0.1186

 0.1610

 0.1211

TwoHopNeigh-FW 0.1500

 0.1195

 0.1619

 0.1211

Table 7.15. Dynamic ensemble performance values (P@10) using the AR methodology

with social-based user predictors (CAMRa, collaborative dataset).

160 Chapter 7. Dynamic recommender ensembles

7.3.4 Discussion

The analysis of the results presented in this chapter shows that ensembles can indeed

benefit from a dynamic weighting of their recommenders. In particular, we have seen

that when these weights come from performance predictors, which previously had

shown significant correlation with the performance of individual recommenders, the

resulting dynamic ensemble tends to outperform static combinations of the recom-

menders. In this context, in order to obtain successful hybridisations, we have to take

several variables into account, which correspond to three stages proposed in our

framework: the correlation between the predictor and the combined recommenders,

the relative performance of such recommenders, the strategy to normalise the predic-

tor‟s values, and the weight distribution among recommenders.

The relative performance of the recommenders has proven to be decisive, since

in some cases, hybridisation does not make sense to begin with, when the difference

in performance between the recommenders is significant and systematic, and thus,

dynamic ensembles cannot obtain the best performance result, although they may

outperform static ensembles. Performance prediction normalisation and weight dis-

tribution, on the other hand, do make a difference in the results. Although no explicit

results are presented in this work regarding different normalisation approaches, pre-

viously conducted experiments showed us that score normalisation produce worse

results than rank normalisation. Finally, the weight distribution strategy is not as

critical as other stages of our framework, but helps to obtain much better results,

specifically, when the one minus strategy (OM) is used.

The obtained results have also shown that more complex formalisations and

probability models do not necessarily lead to better results, with respect to the adap-

tation and definition of the user and item clarity performance predictors. In this ad-

aptation, various configurations were available, and we experimented with further

extensions of different language models for the same clarity model, using rating and

log-based information. Additionally, several graph-based metrics were tested, where

the concept of the user‟s strength in a social network is modelled in different ways.

We find that different formulations for the user-based performance clarity pre-

dictor consistently obtain the best results in different situations for rating-based pref-

erence information. We also experimented with item-based predictors, and found

that the UserItem, URItem, and RatUser predictors were noticeably better than the

rest of the formulations. When log-based information is exploited, the ItemTime and

TimeSimple predictors obtained better results than other predictors not based on the

clarity concept, such as the Autocorrelation function. Moreover, regarding the social-

based ensembles, the HITS, two-hop neighbourhood, and average neighbour degree

approaches clearly outperform the ensemble weighted by the rest of the predictors

and, in most of the cases, also outperform the baseline static ensemble.

7.4 Conclusions 161

These results are, in general, consistent with the correlation values between the

predictors‟ output values and the recommenders‟ performance values. Figure 7.2

shows a summary of the results presented in this and previous chapters, where the

difference in correlation is plotted against the gain (or loss) in performance with re-

spect to the baseline. For this figure, the best and worst dynamic ensembles were se-

lected from Table 7.2, Table 7.11 and Table 7.15. In the figure we may observe the

trend that the larger the difference in correlation, the better the improvement over the

baseline, which is in concordance with the requirement that both correlations should

not be very similar. These results provide some insights in order to understand which

features may help configure well performing dynamic recommender ensembles, where

performance predictors have emerged as a clear useful characteristic.

7.4 Conclusions

In this chapter we have explored how the performance of a recommender ensemble

can be improved by dynamically assigning the weights of its recommenders, by ana-

lysing the performance correlation between the values of a performance predictor

and the performance of an individual recommender. In this way, we have proposed a

dynamic hybrid framework that let decide when and how dynamic hybridisation

should be done.

Drawing from the performance predictors proposed in the previous chapter, we

have conducted several experiments in order to assess whether recommender en-

Figure 7.2. For each best and worst dynamic ensemble in Table 7.2, Table 7.11 and Table 7.15,

this graph plots the difference in correlation between each predictor and a recommender

against the difference in performance between the ensemble and the baseline.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.4 -0.2 0 0.2 0.4 0.6

Correlation difference

Performance difference

wrt baseline

162 Chapter 7. Dynamic recommender ensembles

sembles can benefit from dynamic weights according to such predictors. The results

obtained in our experiments indicate that a strong correlation with performance

tends to correspond with enhancements in ensembles by using the predictor for

weight adjustment. The dynamic ensembles usually outperformed the baseline static

ensemble for different recommender combinations, supporting their effectiveness in

different situations.

In future work we aim to evaluate our framework with more than two recom-

menders in an ensemble, and more than one performance predictor, eventually, one

for each recommender. We also plan to test different normalisation strategies of the

predictor‟s values, where several assumptions about the ideal weight distribution can

be verified, such as whether the user‟s rating distribution or the recommender‟s out-

put are beneficial for the final performance of the ensemble. Moreover, Machine

Learning approaches could also be used to learn the best weights in a user (or item)

basis. Despite being more time consuming, these techniques may also achieve good

results in terms of performance of the dynamic ensemble, although they are usually

more prone to overfit the learned weights.

	Chapter 7
	7 Dynamic recommender ensembles
	7.1 Problem statement
	7.2 A performance prediction framework for ensemble recommendation
	7.2.1 Requirements
	7.2.2 Predictor normalisation
	7.2.3 Weight distribution among recommenders

	7.3 Experimental results
	7.3.1 Dynamic recommender ensembles on rating data
	7.3.2 Dynamic recommender ensembles on log data
	7.3.3 Dynamic recommender ensembles on social data
	7.3.4 Discussion

	7.4 Conclusions

